Tom Blees is the author of Prescription for the Planet - The Painless Remedy for Our Energy & Environmental Crises. Tom is also the president of the Science Council for Global Initiatives. Many of the goals of SCGI, and the methods to achieve them, are elucidated in the pages of Blees's book. He is a member of the selection committee for the Global Energy Prize, considered Russia's equivalent of the Nobel Prize for energy research. His work has generated considerable interest among scientists and political figures around the world. Tom has been a consultant and advisor on energy technologies on the local, state, national, and international levels.

by Tom Blees, 7 November, 2009

Following up on Barry’s article the other day about Spain’s drastic turnabout in solar subsidization and the ripple effects it’s having on the solar industry worldwide, I thought I’d mention some similar news from Germany. I ran across an article from Die Zeit, a prominent German publication. I asked a German friend of mine to translate a couple of the pertinent paragraphs:

"The entire amount can be pretty accurately calculated. The expected installation of new solar modules [in Germany] for the year 2009 will cost the consumer at least ten billion Euros in the next 20 years. Count on an additional 1.8 billion kWh of sun energy from the outlets, which represents about 0.3% of the entire present energy consumption, which means almost nothing. Whatever was built up to 2008 will amount to even more than 30 billion Euros. That at least is what the Rheinisch-Westfaelische Institut fuer Wirtschaftsforshung calculated.

"And the costs will grow rapidly.  If the prognosis of the Union of the European Photovoltaic Industry proves correct, there will be so many new installations by 2013 in Germany that the cost will grow to at least 77 billion Euros, without inflation."

Here’s what Germany’s solar electric output came to in recent years (in GWh):

2006: 2,220 GWh
2007: 3,500
2008: 4,300

According to this, the increase in 2009 comes to another 1800, bringing the 2009 total up to 6,100. Note the progression hasn’t been steady since 2006, increasing by 1300, then just 800, and now 1800, for a three-year average of 1,300. I don’t know what the prognosis of the photovoltaic industry organization above projects for increases to 2013, but let’s assume it’s even higher than this year, that it’ll be 2000 GWh more per year. So that’ll give us this probably over-generous estimate:

2009: 6,100
2010: 8,100
2011: 10,100
2012: 12,100

So by 2013, Germany will have committed to spending €77 billion (that’s over $113 billion USD) for solar capacity equivalent to less than 2% of their 2006 electrical demand.

Now let’s look at the cost of nuclear power plants. Setting aside the legalistic and political quagmire that characterizes the nuclear power industry in America, we can look at the cost of the ABWRs that were built in Japan in the late 90’s at a cost of about $1.4 billion/GW, and the Chinese’ recent estimates for the final cost of their first two AP-1000s ($1.76 billion/GW), and come to the reasonable conclusion that Germany could build Gen III+ reactors for $2 billion/GW, especially modular units in the dozens.

At the moment, Germany’s Gen II nuclear plants have strong capacity factors, including probably the best one in the world with about a 94% CF. So let’s assume that Germany’s brand new Gen III plants could average a 90% CF. For $112 billion, they could build 56GW of new nuclear capacity, for an effective capacity at a 90% CF of about 48GW. Those plants would thus produce about 421,000 GWh annually, which is approximately 68% of Germany’s electrical needs in 2006 (I keep using 2006 figures to be consistent here because that’s the latest IEA data I can find for Germany’s energy stats). Compare that with the <2% expected from solar, and of course unlike solar, nuclear runs 24/7. Now figure in the expected lifespan of the systems: Nuclear: about 60 years. Solar PV: 20-30 years. Being generous and saying 30, that means you’ll get twice as much as the already astounding 34 times the energy that nuclear will produce compared to the same solar investment.

So Germany’s ill-considered (and, amazingly, continuing) national experiment with solar power is costing them roughly 70 times (in costs/kWh) what it would have cost them to build top-notch nuclear power plants, disregarding the intermittency problem with solar, which is no small matter. In other words, Germany could have gone France one better and gone 100% nuclear and saved a ton of Euros in the process. Instead, we have the example of environmental ideology run amok, with very real and seriously negative economic and environmental ramifications.

While I suspect that solar advocates might quibble with some of my figures above, perhaps pointing out that Germany might install even more solar panels by 2013 than I project here, but really there’s simply no comparison no matter how you massage the numbers. The statistics are there in plain sight.


This article was originally posted on Barry Brook's Brave New Climate site. To read or participate in the extensive commentary that followed, click here.

scgi logoThe Science Council for Global Initiatives is a nonprofit 501(c)(3) charitable organization. All contributions are tax-deductible.
© 2023 The Science Council for Global Initiatives | We do not use cookies.

Sorry, this website uses features that your browser doesn’t support. Upgrade to a newer version of Firefox, Chrome, Safari, or Edge and you’ll be all set.